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APPROACHED BOLZA TYPE PROBLEMS IN DISCRETE
TIME

A. BEDDANI AND R. SAHRAOUI

ABSTRACT. Our aim is to give approximate optimality conditions for
Bolza type problem in discrete time with finite dimensional in non-
smooth analysis.We have just applied the subdifferential calculus of
Mordukhovich(see,e.g., [1],[2],[3]) on the one hand and on the other
hand, the Ekeland’s variational principle (see,e.g., [20],[21],[22]) .
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1. INTRODUCTION

The differential of a convex function generalizes the notion of deriva-
tive and provided its first examples in the theory of maximal monotone
operators, so successful for partial differential equations and integral equa-
tions. Another motivation also is an adjunct of working without convexity,
called nonsmooth analysis. This paper is based on the limiting Frechet
sub-differential which is introduced by Mordukhovich for several reasons:
in particular because this sub-differential is "smaller" than of Clarke(see[2],
[29], [1]), it contains fewer errors and it is interesting for the riches their
calculations. One objective of the optimization is to establish necessary
and sufficient optimality conditions if possible. The existence of the opti-
mum solution is ensured for example by the compactness of the domain and
the semi-continuity of the objective. And if one of these conditions is not
satisfied the problem may not have exact solutions, but if the objective is
bounded from below, the infimum exists without being hit. It is for this
reason Ekeland thought to the notion of the approximate solution. And he
was the first one in 1972, whose gave the approximate necessary optimal-
ity conditions (see [20, 21, 22, 23]). So, our paper carries on the one hand
on the Ekeland’s variational principle, which has been a very importance
in nonlinear analysis, and enjoyed a great variation of applications ranging
from geometry Banach spaces, in the optimization theory and subdifferential
generalized calculation to calculate the variation. And secondly on the non-
smooth analysis in order to generalized approximate optimality conditions
for Bolza type problems with constraints in discrete time(see, e.g., [31],[29]).

First of all, let us recall the form of general Bolza type problem in the
Variations Calculus in Non-smooth Analysis which can be formulated as the
minimization of the functional
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t

1) I(z) = Ua(to), 2(t)) + / Lt (1), #(0)) dt,

to

over the space Wit ([to, t1]) := WL ([to, 1], R™) of all absolutely continuous
arcs x : [tg,t1] — R™ whose derivatives @(-) (defined almost everywhere)
belong to L. ([to,t1]) and such that for all ¢ € [to, 1],

t1

z(t) = z(0) +/ z(s)ds.

to

Since the functions [ and L are assumed to take their values in RU{+oc0}.
This formulation incorporates the equalities and inequalities constraints rel-
ative to the initial end point pair (z(tg),x(t1)) and possibly nonsmooth set
constraints and set-valued constraints.

In the corresponding discrete time problem, one considers in place of an
arc x : [tg, t1] — R™ a vector = (zg, 21, -+ ,o1) € R x--- x R" = (R?)T+!
i.e, a discrete arc, and in place of & = ‘fi—f the difference Axy = xp — @41
for t = 1,---,T. The associated problem (P(l,L)) takes then the form:

Minimize over all z = (g, 21, - ,z7) € (R")T+! the function
T

(2) J(l’) = l(fl:[), 1'1) + Z Lt(l’t,l, Axt)7
=1

where [ and L; for allt = 1, --- , T are functions from R™ x R" into RU{+o0}
which are proper, that is, none of which is identically +occ. Throughout, we
assume that these functions are lower semicontinuous (lsc, for short) or
locally Lipschitzian. Then J, too, is Isc with values in R U {4+o00}. As
for the Bolza type problem above in variations calculus, it is important to
observe the fact that in (P(I, L)) the constraints are implicit in the inequality
J(x) < oo, because only vectors x satisfying J(z) < +oo are of interest in
the minimization.

The discrete Bolza type problem (P(I, L)) has been introduced and largely
studied in the conver setting by Rockafellar and Wets [29]. Results concern-
ing the discrete Bolza type problem in the form (P¢ p(l, L)), with [ and L
locally Lipschitzian, have been also provided in Mordukhovich [2][Theorem
6.17], see [1]. It is also worth mentioning that, among domains of its own
interest, the problem (Pc r(l,L)) contains as particular case the modeliza-
tion of various economic dynamics see,[2]. In the present paper we focus our
attention to the discrete problem without any convexity assumption.

Throughout, we assume that J is proper, that is, there exists some z €
(RM)T+1 such that (20, 27) < +oo and Ly(z_1,A%) < +oo for all ¢t =
1

;- , T Letting
(3) C = {(u,v) € R* x R" | l(u,v) < oo},
(that is, C' is the effective domain dom! of [) and
(4) Fi(u) :={v € R"| Ly(u,v) < oo},

it is emphasized in [29] that, without loss of generality, one can restrict
attention in (P(l, L)) to minimizing J(x) over the set of all z € (R")T+!
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which satisfy
(5) (zo,z7) € C and Axy € Fy(xi—1),Vt=1,--- | T.

Implicit in the dynamical constraint Az; € Fy(z:_1) is the state constraint
241 € Zyfort=1,---,T, where

Conversely, given finite valued functions [ and L, set constraint C C R"™ x
R™ and set-valued mapping constraints F; : R™ = R"™, it is also of interest
to study the minimization problem (Pc (I, L)) consisting in minimizing
the function J(-) above over all the vectors z € (R™)T*! satisfying the
constraints in 5. At a first step, this problem may be translated in the form
of problem (P(l, L)) by putting on the one hand I(u, v) = I(u,v) if (u,v) € C
and I(u,v) = +oo otherwise and one the other hand Ly(u,v) = L¢(u,v) if
v € Fy(u) and Li(u,v) = +oo otherwise.

2. DEFINITIONS AND PRELIMINARIES

In the next section, although our approached optimality conditions could
be given with the use of many types of subdifferentials, we will limit ourselves
to state and establish them with the basic limiting subdifferential. Recall
first that for a proper Isc function f: R"™ — RU {+oo} and u € dom f the
Fréchet subdifferential 9f (u) is defined by the fact that a vector v € df (u)
when for any positive number ¢ there exists some positive number 7 such
that one has

(v, —u) <e|u —ul| forall v’ € B(u,n),

where B(u,n) denotes the open ball with radius n centered at the point w.
One puts in general df(u) = () when f(u) is not finite, see, [2]. When f
is the indicator function dg of a closed subset S C R", that is, dg(u) = 0
if u e S and dg(u) = oo otherwise, its Frechet subdifferential at a point
w € S is a cone. It is generally called the Frechet normal cone to S at w
and one denotes either Ng(u) or N(S,u). Since the Frechet subdifferential
enjoys only fuzzy calculus rules (see, e.g., [2] for more details), one considers
a limiting process of such subdifferentials yielding to the so-called limiting
subdifferential. A vector v is in the limiting subdifferential 0f(u) at a point
u € dom f when there exists a sequence (ug, f(uy)) converging to (u, f(u))
and vectors vy € df(ug) with v, — v. As above, one sets df(u) = () if
u ¢ dom f. The set df(u) is nonconvex in general but it enjoys full point
based calculus rules. For example, if g : R™ — R is a locally Lipschitz
function one has (see [2, 29]) the inclusion

(6) O(f +g)(u) C 9f(u) + 9g(u),
where the addition in the second member is taken in the usual Minkowski
sense, that is,

Af(u) 4+ dg(u) == {v+'|v e df(u), v € dg(u)}.

The inclusion (6) can be also obtained under a much weaker condition
than the local Lipschitz property of one of the functions f and g. To see
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that, let us recall the concept of singular limiting subdifferential. Modifying
slightly the definition above, we say that a vector v belongs to the singular
limiting subdifferential 0% f(u) at a point w € dom f when there exists a
sequence (ug, f(ug)) converging to (u, f(u)), positive numbers A | 0 and
vectors v € éf(uk) such that A\gvp — v. So, if for two lsc functions f,g
the qualification condition 9% f(u) N (—0*°g(u)) = {0} holds, then one has
see, e.g., [2, 29] O(f + ¢)(u) C Of(u) + dg(u). This qualification condition
can be translated see, e.g., [2, 29] in the case of any finite number of lsc
functions: for a finite number of lsc functions f;, i = 0,1,--- ;m, and for

u € NI2ydom f; one has
(7) o> f)(w) < 3 ofi(u),
=0 =0

whenever for any y; € 0% fi(u) with " jy; = 0 one necessarily has yo =
y1 = -+ = ym = 0. The inclusion (6) is a particular case of (7) since

(8) 0*°¢g(u) = {0} whenever f Lipschitznear w.

The same qualification condition above also gives (see, e.g., [2, 29])
m m

© (3" F)w) € 3" 0= Fi(w)
=0 =0

Concerning the composition operation, we will recall the result with the
composition with a linear mapping. If A : R™ — R" is a linear surjective
mapping, then see [2, 29]

(10) O(foA)(u) C A*0f(Au) and 9°(f o A)(u) C A*0° f(Au),
where A* denotes the adjoint of A and A*0f(Au) = {A*v|v € 0f(Au)}.

As for the Frechet normal cone (see above), the limiting normal cone to
a closed subset S at w € S is defined through its indicator function by
Ng(u) := 0dg(u). Sometimes one write N(S,u) in place of Ng(u). The
connexion with the singular subdifferential is provided by the equalities

8%°55(u) = 85s(u) = N(S,u).

Of course, when the point u is a minimum point for the function f one
has both 0 € df (u) and 0 € 9f(u), the first inclusion being obvious under
the minimum point assumption and the second one being a consequence of
the fact that one always has f C f. Further, when f is convex, the
Frechet subdifferential and the limiting subdifferential coincide with the
usual Fenchel subdifferential of Convex Analysis. In the next section, we
will just say subdifferential of f and normal cone to S in place of limiting
subdifferential of f and limiting normal cone to S.

We based in our research on several articles that are cited in the bibliog-
raphy of this paper, so let us recall the two theorems which we based on,
for our extenton (see, [31],[21]).
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Theorem 2.1. Let 7 € (R™)T*! be a solution of problem (P(l, L)).
Assume that | and Ly are proper and lsc for allt =1,--- T and that the
following qualification condition Q(Z) holds:
the only vector y = (yo,--- ,yr) € (R™)TH for which
(y07 _yT) € 800l(:f()7 jT) and (Ayt7yt) S 800Lt(it—17 A:ft)th = 17 T )T
is the zero vector in (R?)T+1,
There exists some vector p = (pg,--- ,pr) € (RM)TH such that:
a) (po, —pT) € 81(:?0,.%7").
b) (Ape,pt) € OLt(Ty—1, AZy) for allt =1,---,T.

Theorem 2.2. Let f : R® — R a proper function, lsc. and bounded from
below on R™. For each € > 0 and each uw € R™ such that:

f(u) < inff +e.

For each \ > 0, there exists v € R™ such that:

(11) f(v) < fu),
(12) o —ull <A
(13) f(v)<f(m)—i—;fovH,V:vER”,Vz;AU.

Consider the following minimization problem with constraints:

min f(z)
(P) { z e S.
Where f : R® — R is l.s.c., S a nonempty closed subset of R", and f
is bounded from below on S. For ¢ > 0 fixed, we say that v € S is an
approximate solution of (P), where f(u) < i%f f + e. The approximate

necessary optimality condition, adapted to the present context, gives:

Corollary 2.3. Let u an e-minimizer of f on S. Then, for each X > 0,
there exists v € S such that:

fv) < f(uw),
[v—ul <A,
fv) < f(z)+ ; |z —v|| ¥z € S,z # v.
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3. APPROACHED OPTIMALITY CONDITIONS

The following result states the basic theorem of the paper. Here the
functions [ and L; are neither convex nor locally Lipschitzian.

Theorem 3.1. Assume thatl and L; are proper, Isc and bounded from below
forallt=1,--- T. So for each € > 0 and each uw € R™ such that:

J(u) < iﬂgnf‘]—ks.

There exists = € R™, an approzimate solution of (P(l,L)) and that the
following qualification condition Q(x.) holds:
the only vector y = (yo,--- ,yr) € (R™) T+ for which
(Y0, —y7) € Osol(2, 25) and (Ays, yi) € OsoLe(xf_1, Ax§), YVt =1,--- | T
is the zero vector in (R?)T+1,
For each A\ > 0, there exists some vector p. = (p§,- - ,p5) € (R?)T+H
such that:
a’) (pg’ _p%) € al(xf]v .’E%) + %B?Rn)z-
b) (Ap§,ps) € OL(x5_y, Axs) + %BTR")Z’ forallt=1,---,T.
Proof. The function J(-) are proper, lsc and bounded from below in (]R”)T+1 ,
because [ and L; are proper, lsc and bounded from below for all V¢ =
1,---,T. we can apply the Ekeland’s variational principle (see Theorem2.2
to the function J. According to this result, Ve, A > 0, there exist an approx-
imate solution z.,which satisfies

€
J(xe) < J () + X |z — x|, Vo # z.
Now, we consider
€
Je (@) = J (2) + + |z — ]l

Therefore, Je (z:) < J- (z),Vx # x-.S0, xc is a minimum of the function
J: (+) . Knowing that
L(@) =J@)+% o

T

=1 (zo,z7) + > Lt (-1, Aay) + € ||z — x|
= .

=1l(zo,z7) + > L (@1, D) + %z%] lze — x5 ||
t=1 t=

T T
=l(zo,21) + Y Lt (we—1, Awe) + 5 lwo — x5l + 520 |2 — x|
t=1 t=1
T
= (l(zo, 1) + § llwo — 25ll) + 2= (Lt (wem1, Dwe) + 5 [ — 25]]) -
t=1

Next consider the functions [, and L.; defined by:

le (zo, 2z7) =l (x0, 27) + 5 ||T0 — 25|80
Let (x1-1, Awe) = Ly (241, Awe) + 5 |20 — 2F g -

T

Then we have: J; (z) = l. (20, 27) + Y Let (24-1, Axy), and consider the
=1

problem noted (P: get):
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Minimize over all z = (zg,z1, - ,27) € (R")T+! the function
T
(14) Je () = I (wo,27) + Y Leg (w121, Axy)
t=1

and consequently . is a solution of the problem (P 4et) and J: (-) is proper
function, I.s.c and bounded from below on R™. and that the problem (P get)

satisfies the qualification condition at z., because O ||.|| = {0} . Now we
can apply the basic theorem of Sahraoui [31] on (P; get) , which gives us the
existence of a vector p. = (pf, - - ,peT) € (R")TJrl such that:

a) (pg, —peT) € 0l (xg, x5)
b) (Apf,pf) € 0Ly (asf_l, Awf) Nt=1,---
we can easily write:
le (:It()7 QST) = (l + 616 o Fo) (.’170, .’ET) s
Ltﬁ (a:t_l, .’Iit) = (Lt,s + 595? o F) (-'L't—l, A.’Et) ,Vt = 1, e ,T.

knowing that

Fy (a,b) = a, F§ (a) = (a,0),V (a,b) € (R")?,
F(aab) =a+0bF” (a) = (aza) ,V(a,b) € (Rn)Qa
and dgs (y) = 5 ly — zil|, vt =1,--- , T,y € R". By applying the subd-
ifferential calculus, see [2] one will have,
Ol (x5, 25) =0 (I+ 845 0 Fo) (5, 25)

C 0l (5, 27) + 0 (80,2 © Fo) (25, 27)
C Ol (zf,2%) + Fy (659”5 (Fo (x5, a:ET)))
C Ol (x§, 27) + Fg (96a2 (25))
C Ol (x§, 77) + $B(gn)2,

T

) b

and also that
OLie (a:f_l, A:Ef) =0 (Lt,s ) F) (a:f_l, A:Ef)
C 0Ly (25_1, Axg) 4 0 (0as o F) (25_1, Axf)
C 0Ly (w5_y, Aa§) + F* (00qe (F (x5_q, Aag)))
C 0L, (xf_l, Am%) + F* (55x§ (xf_l + A;nf))
C 0Ly (xf_l, Amf) + %B(R")%

which gives

€
(pg, —p;,) e 0l (IIZ(E), :L"?:p) + XB(Rn)z
€
(Aps,p;) € 0Ly (35?71’ Aw?) + XB(Rn)2’W =1, ,T.
Hence the desired result. O

The following corollary deals with the discrete problem (Pc p(I, L)), that
is, the case of Lipschitzian functions | and L, explicit set constraint C' and
set-valued mapping constraint F;. Before stating the corollary, we need to
recall that the graph of the set-valued mapping F; is the subset

gph F; == {(u,v) € R x R|v € Fy(u)}.

In the corollary we assume that the sets C and gph F; are closed in R™ x R™.
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Corollary 3.2. Assume that the functions | and L; are locally Lipschitzian
and bounded from below for allt =1,--- ,T. Then there exists x. such that
the qualification condition Q(xc), holds.

The only vector y = (yo,--- ,yr) € (]R”)TJrl for which
(yo, —yr) € Ne (25, 25) et (Ayt, Yt) € Nephr, (wf_l, Amf) NVe=1, ... , T,
is the zero in (R™)TH1.

And there exists some vector p. = (p§,--- ,p5) € (R")T*! such that:

a) (pg, —p7) € Ol(x, %) + Ne(zg, 27) + SB?R”)T

b) (Apf,pi) € aLt(mf—la AZE%) + ngth(mi_p AZE%) + EB?Rn)z for all t =
1,--,T.

Proof. Put S; = gphF; for allt =1,--- ,T. Consider the functions

I (o, o7) =l (zo, 27) + dC (w0, 7T) 4
Ley (w1, Axy) = Loy (v4-1, Axy) + 85, (201, A2y)

which are Isc and proper. Let us prove that the qualification conditionn@(x*)
of Theorem 3.1 holds for the functions /. and L.; for all t = 1,--- ,T. So
let y € (R™)7+! such that
(%0, —yr) € Onole(a, 27),
and
(Aye, 1) € OooLe g2 1, Ax), NVt =1,--- | T.

As [., L. are locally Lipschitzian functions for all t = 1,--- T, we see

first that by (8) and (9)

(yOa _yT) € 8ool~6($(6)7 375“) C N¢ (w(s)a x%) »
and also

(Ayta yt) € aooz’&t(mf—l’ A.’E?) - ngth (‘Ti—l’ A.’Ef) 7Vt = 17 e 7T'

By the qualification condition Q(z°) we have yo = y; = --- = yp = 0,
that is, the qualification condition Q(z¢) is satisfied.
Since I and L.; are proper and lsc for all ¢ = 1,--- ,T and since the

qualification condition Q(z) relative to the problem associated with I, and
I~,57t holds, and by applying the theorem 3.1 we obtain some vector p. =
(pf), e ,p‘fT) IS (R")T+1 such that:

a) (pg, —pET) € 0ls (2§, 25) + No (2§, 25) -

b) (Ap§,pf) € OLyg (25 1, Axf) + Ngphp, (2.1, Axf) ,Vt=1,--- , T.

Observe also that

Ol (x5, 27) C Ol (2§, 27) +eBgny2 et OLte (271, 27) C OL¢ (-1, Awf) +
EB(Rn)Q.

Finally we conclude that

a) (pg, —psT) € Ol (zf, %) + No (25, 25) + 6B(Rn)2.

b) (Ap,pf) € L (27_1, Ax§) +Ngphr, (27_1, H27) +eB gz, VE=1,--- | T.

O
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Let Cy be a nonempty closed subset of R™. The next corollary concerns
the minimization problem (P¢, r(g, L)) where the objective is to minimize

the function
T

T — g(-TT) + ZLt(l‘t, Aa;t)’
t=1
under the initial constraint xy € Cjy and the inclusion constraints Az; €
Fy(xy_q) forallt=1,---,T.

Corollary 3.3. Let z. € (R")T*! be an approzimation solution of problem
(Poy,r(9,1).
Assume that the functions g and Ly are locally Lipschitzian for oll t =
1,---, T, and that the following qualification condition Q(z:) holds:
the only vector y = (yo,--- ,yr) € (RM)THL for which
Yo € NC@(wO)ny = 07 and (Ayhyt) € ngth(It—la Awt)a\v/t = 17 e 7T 18
the zero vector in (R™)T+1,
Then there exists some vector p = (p§,--- ,p7) € (R")T*! such that:
a) po € Ngy (25) + eBin, pr € —0g(27) + eBin,
b) (Aps,pe) € OLg(xf_, Ax§) + Nephpe(25_1, Axf) + eBpn for all t =

) )

Proof. Put l(zg, z7) := g(ar) and C := Cy x R™. Then the normal cone to
C' is given by N¢(zo,z1) = Ngy(xo) X {0} and the function ! is obviously
locally Lipschitzian with the equality 0l(zo, JCT) = {0} x 9g(zr). Further, it

is easily seen that the qualification condition ()(z.) holds. Thus, the result
is a consequence of Corollary (3.2). O

The previous corollary is relative to the case when the images of the set-
valued mappings F; are prox-regular. Recall that a closed subset S of R"
is p-proz-regular (for some p €]0,4o00]) when for any point z of the p-open
tube

Up(S) :={u e R"| d(u, S) < p}.
(where d(-, S) is the distance to S with respect to the Euclidean norm), the
set S has a unique nearest point (denoted by Pg(z)) to z. Recall also that
for any set-valued mapping G : R™ = R” the coderivative of G at a point
(u,v) € gph@ is the set-valued mapping D*G(u,v) : R" = R" given by
¢ € D*G(u,v)(€) if and and only if (¢,—¢) € N(gph G, (u,v)).

We will also need the Lipschitz property concept for set-valued mapping.
Recall that the set-valued mapping G is locally Lipschitzian around a point
@ with a non-negative number « for Lipschitz modulus provided that there
exists some positive number 1 such that for all u,«’ € B(@,n) one has

F(u) € F(u) + lu—||B,
where B denotes the closed unit ball of R™ centered at the origin. We can

now state the corollary for the problem (Pc,, r(g)) where each function L;
is equal to the null function.

417
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Corollary 3.4. Assume that the function g is locally Lipschitzian and that
each set-valued mapping Fy is locally Lipschitzian. Then there exists x§_,
fort=1,--- T. And there exists some vector p. = (p§,--- ,p5) € (R")T+!
such that:

a) p§ € Noy(a%0) + B, 5 € —Bg(a°7) + B,

b) (Apf,pf) € Ngph i, (25_1, Axf) + Bigny for allt =1,--- T, that is,

3(z1,22) € Bignye/ (Ap; — ex1) € D*Fy(af_y, Axg)(—p; + ex2).

Proof. From (3.3) with the function L, is equal to the null function we find
a) pj € No, (2°0) + eBgn, 7 € —0g(2°7) + B,
b) (Apf,pf) € Ngph (251, Axf) + EIB’("Rn)Z forallt=1,---,T,
it is easy to observe that:
I(x1,22) € B{gn)2 satisfying (Apf — ex1,pf — ex2) € Ngph 1, (25_1, Axf),
then
Ap; — exy € D*Fy(x_q, Axg)(—pi + ex2).
O

In the case when the functions [ and L; are convex continuous, we will
use the notion of the relative interiors of the domain of the functions [ and
L;.

Theorem 3.5. Assume that the functions | and Ly are convexr continuous

(non necessarily lsc) for allt = 1,--- | T and assume also the qualification
condition holds:
There exists some point y = (yo,--- ,yr) € (RM)TH such that

(yo, —yr) € ri doml and (Ay,y;) € ri domLy, vVt =1,...,T.
Then, there exists an approzimate solution z. € (R")T+L of the problem
(P(I, L)) if and only if there exists some vector p. € (R")TH! satisfying
relations (a) and (b) of Theorem 3.1.

Proof. The proof of this theorem is a direct application of the two theorems
3.1 and the Theorem 3.7 [31]. O
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